超高耐熱性を備える CMC 材料の研削加工に関する研究(第3報)

安藤 亮* 早乙女 秀丸** 曽我部 雄二* 飯村 修志***

1. はじめに

航空宇宙関連産業では、機体の軽量化による燃費改 善を図る目的で、セラミック基複合材料(CMC)の開発が 進められている¹⁻²⁾。CMC は、セラミックス強化繊維と 母材で構成されており、炭素(C)系材料で作られる C/C や炭化ケイ素(SiC)で作られる SiC/SiC がある。

CMC は、高耐熱性、高剛性などの特徴を備え、従来 のセラミックスの欠点である脆さが改善された材料で あるが、加工によるクラック形成が材料破壊につなが る恐れがあり、材料へのダメージを極力低減するため、 長時間かけて加工を行う。そのため、クラック抑制と 加工時間短縮を両立する新たな加工技術確立が実用化 への課題である。

これまでに、SiC/SiC のマシニング加工に関する研 究を実施し、送り方向の抵抗を抑えることで層間剝離 を防げることを見出した³⁾。さらに、加工性向上に寄 与する表面処理技術に関する研究を実施した結果、SiC にレーザーを照射することで、表面に柔らかい変質層 が形成されることがわかった³⁾。

2. 目的

本研究では、マシニングセンターによる SiC/SiC の 加工時間を3割短縮することを目的とし、以下を実施 した。

- ・平面研削に対するレーザー処理の検討
- ・レーザー照射の定量的な影響評価
- ・耐熱性コーティングの開発
- ・マシニング加工条件の最適化

3. 研究内容

3.1 平面研削に対するレーザー処理の検討

SiC/SiCの平面研削に対するレーザー処理の有用性を検証した。

a)試料

PIP法(SiC 織布の積層体に SiC マトリックスを含浸 し、焼成を行う工程を繰り返して緻密化を図る)によ って作製した SiC/SiC を試料とした。マトリックスの 含浸・焼成回数は 12 回とした。試料形状は 1cm 角の立 方体とした。

b) レーザー照射

レーザーマーカー(MD-X1520、キーエンス製)を用い て、SiC/SiC に対してレーザーを照射した。照射条件 は 表1に示すとおり、周波数と走査速度を固定し、 平均出力を変えた。

	A レーリ	一照射未什	
冬仲	平均出力	周波数	走査速度
条件	(W)	(kHz)	(mm/s)
1	6.0		
2	7.5	75	100
3	9.0		

表1 レーザー照射条件

c)加工実験

研削盤(GS-BMH、黒田精工製)を用いて、レーザー照 射後のSiC/SiCに対して平面研削加工を行い、研削抵 抗を評価した。平面研削加工の様子を模式的に図1に 示す。

研削抵抗を計測する動力計(9129AA、日本キスラー 製)を試料下部に設置した。試料の送り方向に対して逆 向き、および、垂直に働く抵抗をそれぞれFt、Fnとし た。加工条件を表2に示す。

表 2 加工条件

	形状(φ×mm)	180×100		
	材質	ダイヤモンド		
ホイール	平均砥粒径(μm)	30		
	ボンド	BW		
	集中度	75		
周速(m/min)		1696		
送り速度(m/r	nin)	25		
切り込み量(μm)	10		
サンプリンク	ドレート (Hz)	8400		

3.2 レーザー照射の定量的な影響評価

a) 試料

レーザー照射後のSiC/SiCに対する加工条件設定に 必要なデータを取得するために、SiC/SiCのマトリッ クスを想定してSiC表面にレーザーを照射し、形成さ れた変質層厚さの定量的評価を試みた。照射条件を 表3に示す。周波数と走査速度を固定し、平均出力を 表中のように変えた。

表3 レーザー照射条件

	F		
条件	平均出力	周波数	走査速度
	(W)	(kHz)	(mm/s)
1	1.0		
2	1.5		
3	2.0		
4	2.5	10	100
5	3. 0		
6	5. 0		
7	10.0		

茨城県産業技術イノベーションセンター研究報告 第51号

b)表面の酸素分布

FE-EPMA (JXA-IHP200F、日本電子製) を用いて、レー ザー照射後の SiC 表面の面内酸素濃度分布を調べた。 また、特性 X 線を得るための電子線の加速電圧を 15kV とした。

c) 深さ方向における酸素分布

レーザー照射後の SiC 側面に対して、イオンミリン グ(IB-19520CCP、日本電子製)によるイオンビームを照 射し、面粗度を調整した。FE-EPMA を用いて調整した 面の表層側から深さ方向における酸素分布を調べた。

3.3 耐熱性 SiNBC コーティングの開発

a) コーティング作製

CMC の耐熱性向上に寄与するセラミックス系コーティング成膜に必要な基礎データを取得するため、前駆体合成を行った。0.2molの三塩化ホウ素とジメチルジクロロシランを原料として、-70℃に温調したトルエン中で脱塩素反応させ、合成を行った。表4に合成条件を示す。

	雰囲気ガス(ml/min)			
条件	窒素	アンモニア	反応時間 (min)	
1		400	164	
2	100	300	109	
3		200	90	

表4 合成条件

反応ガスである窒素に対するアンモニアの量を変え て合成を行った。表中の反応時間は、原料の仕込み量 とアンモニア流量を基に算出した脱塩素反応が終了す るまでの時間である。

コーティング用基板であるアルミナ板を合成した前 駆体に浸漬し、乾燥させた。雰囲気炉(S7T-2035DSP、 モトヤマ製)を用いて、乾燥後のアルミナ板を焼成した。

表5に焼成条件を示す。

条件	設定温度 (℃)	昇温速度 (℃/min)	保持時間 (時間)	雰囲気
1	1200	0	1	空丰
2	1400	2	1	至杀

表5 焼成条件

乾燥後のアルミナ板を炉内に静置し、炉内温度が設 定温度に到達した時点からその温度を一定時間保持す ることで焼成を行った。焼成時の雰囲気は窒素雰囲気 とした。

b)結晶構造評価

X 線回折装置(SmartLab、リガク製)を用いて、焼成 後のアルミナ板表面の結晶構造を評価した。測定法と して薄膜法を用いた。測定条件を表6に示す。

表 6 測定条件

		1
入射角	入射スリット	捡山兕
(°)	幅(mm)	快山岙
0.1	2.0	D-tex

3.4 加工条件の最適化検討

小型マシニングセンター(ロボドリルα-T14iDs、フ ァナック製)を用いて、マシニングによるSiC/SiCの加 工条件最適化に関する検討を行った。

a)試料

試料は3.1a) 試料と同様のSiC/SiCを使用し、加工後の機械的特性を調べた。表7に、機械的特性を調べるために加工したSiC/SiCの形状を示す。

表7 試料形状

⇒●●	寸法(mm)			
武映的谷	厚さ	長さ	奥行	
研削抵抗測定	5	10	10	
三点曲げ評価	10	45	10	

b)加工装置

小型マシニングセンターを用いて、SiC/SiC の研削 抵抗を評価した。

図2に、研削抵抗測定の様子を模式的に示す。

図2 マシニング加工の模式図

工具であるエアスピンドル(HES810-BT30、ナカニシ 製)を取付けた加工機に対して、動力計(9119AA2、日 本キスラー製)を設置し、試料を動力計の上にクラン プで固定した。試料の送り方向に対して逆向きの研削 抵抗をFt、垂直に働く抵抗をFnとした。なお、軸方 向に工具を移動することはなかったため、Fs について は、測定を行わなかった。

c) レーザー処理

3.1 で最も厚い変質層が得られた条件を用いて、 SiC/SiC表面にレーザーを照射後、SiC/SiCに対してマ シニング加工を行い、研削抵抗を評価した。 茨城県産業技術イノベーションセンター研究報告 第51号 レーザー照射条件と加工条件を表8に示す。

ダイヤモン 形状(φ×mm)		4×5			
ド電着工具	粒径・材質	#600 電着ダイヤモンド			
周速(m/min)		約 800			
送り速度(m/r	min)	1000			
切り込み量(μ m)	100、200、400			

表8 加工条件・測定条件

d) 加工条件の提案

これまでの研究結果を基に、マシニング加工を行い、 加工後の曲げ強度を調べた。提案した加工条件を表 9 に示す。提案条件1は加工条件のみを、提案条件2は 提案条件1にさらにレーザー処理を施したものである。 また、比較のため、従来条件を表中に示す。

hnt	而工 従来条件 提案条件		条件 1	提案条件2		
回数	切込 (mm)	工具	切込 (mm)	工具	切込 (mm)	工具
1	0.2	#220	0.4	#220	0.4	#220
2	0.2	#220	0.4	#220	0.4	#220
3	0.2	#220	0.4	#220	0.4	#220
4	0.2	#220	0.4	#220	0.4	#220
5	0.2	#600	0.2	#600	0.2	#600
6	0.2	#600	0.1	#600	0.2	#600
7	0.2	#600	0.1	#600	※5と6	の間で
8	0.2	#600			レーザー	- (平均
9	0.2	#600			出力 10	W、周波 土本
10	0.1	#600	】 数 10kHz、 速度 100r		z、走宜 Omm/s)	
11	0.1	#600			を照射	, 3 /

表9 提案した加工条件

なお、表9では、条件に関わらず、除去する総量は 2mm とした。加工後の SiC/SiC に対して万能試験機 (INSTRON 5966、インストロン製)による曲げ試験を 実施した。試験条件を表10に示す。

表 10 曲げ試験条件

1 444	加工有	$8 \times 10 \times 45 (\text{mm})$
武阙八	加工無	$10 \times 10 \times 45 (\mathrm{mm})$
試験速度		0.5(mm/min)
停止条件		破断もしくはひずみが 10%
		に達した時点

4. 研究結果と考察

4.1 平面研削に対するレーザー処理の検討

研削抵抗評価結果を図3に示す。出力0のときの値 は、レーザーを照射していないSiC/SiC表面の抵抗に 相当する。

図3より、方向に関わらず、研削抵抗はレーザーの 平均出力増加に対して減少する傾向であった。この結 果から、レーザーを照射することでSiC/SiC表面に加 工に有利な層が形成されたことが推察される。

4.2 レーザー照射の定量的な影響評価結果

a) 表面の元素分布評価結果

レーザー照射後の SiC 表面における酸素分布を図 4 に示す。図中のカラーマップは、青色ほど酸素濃度が 低く、赤色ほど酸素濃度が高い。

図4より、照射面内の酸素濃度は、レーザー出力の 増加に伴い増加する傾向であった。

b) 深さ方向における酸素分布

レーザーを照射した SiC 表面から深さ方向における 酸素分布を図5 に示す。図中の緑色の箇所は、酸素濃 度が高いことを意味する。

図5 SiC表面から深さ方向への酸素濃度分布

酸素が分布する範囲は、レーザー出力の増加に対し て広がる傾向であった。この結果は、レーザー照射に よって、SiC表面にSiCよりも柔らかい酸化層が形成さ れ、かつ、その厚みはレーザー出力の増加に伴って増 大することを示唆する。特に、レーザー出力を10Wにす ると、10 µ m程度の酸化層が形成される可能性がある。

4.3 耐熱性SiNBCコーティングの開発

図6(a)、(b)に、表5で示した設定温度1200℃と1400℃ で焼成した後の、アルミナ板表面のX線回折パターン を示す。比較として、アルミナの回折パターンも図に 示す。なお、図中の各条件は、表4の合成条件である。

図6(a)では、表4中の条件2を用いて合成した前駆体 によるコーティングにおいて、Si3N4の結晶による回折 ピークが観測された。

図6(b)では、条件1、2を用いて合成した前駆体によるコーティングにおいて、Si3N4の結晶による回折ピークが観測された。

焼成温度に関わらず、反応時間が最も短い条件3を用 いて合成した前駆体によるコーティングでは、アルミ ナ以外の結晶によるピークは観測されなかった。

これらの結果から、合成時のアンモニア流量によっ て、焼成のコーティングの結晶構造に違いが生じる可 能性があることがわかった。

4.4 加工条件の最適化検討結果

a) レーザー処理の検証

図7に、レーザー処理したSiC/SiCに対してマシニ ング加工を行ったときの切込量と研削抵抗の関係を示 す。比較として、レーザーを照射しなかったSiC/SiC の結果も示す。

図7 切込量と研削抵抗の関係

同一の切込量・方向で比較した場合、レーザーを照 射した SiC/SiC の研削抵抗はレーザーを照射しないも のに比べて小さかった。

なお、切込量を400μmに設定した場合、レーザーを 照射しないSiC/SiCにおいて層間剥離が生じたため、 加工を行うことができなかった。

これらの結果より、SiC/SiC に対するレーザー照射 が、マシニング加工の加工性向上に対して有用である ことがわかった。

b) 提案加工の検証結果

図8に、表9中の条件を用いてマシニング加工を行ったSiC/SiCの曲げ強度を示す。比較として、加工を行わなかったSiC/SiCの結果も示す。

図8 曲げ強度

提案条件で加工した SiC/SiC の曲げ強度は、加工を 行わなかった SiC/SiC、および、従来条件で加工した SiC/SiC に比べて大きかった。

この結果から、提案条件の有用性が示唆されたと考 えられる。一方で、提案条件のサンプルが加工なしよ りも強度が大きくなったことに関しては、CMC の破壊 メカニズムが解明されていない部分があり、さらなる 調査が必要と思われる。

5. まとめ

本研究を実施した結果、マシニングセンターによる SiC/SiC CMC加工について、加工回数削減により、加 工時間3割以上短縮を達成することができた。

今後は、破壊メカニズムの解明とともに、PIP法とは 異なる手法で製造したCMCの加工特性などを、取得して いきたい。

なお、本研究は令和2年度から令和4年度まで文部 科学省特別電源所在県科学技術振興事業「超高耐熱性 を備える CMC 材料の研削加工に関する試験研究事業」 の一環として実施したものである。

6. 参考文献

- 1) T. Ogasawara, Plasma Fusion Res. 80, 1 (2004).
- T. Shibayama, H. Takahashi, J. Japan Inst. Metals, 64, 11 (2000).
- 3) 安藤亮他:茨城県産業技術イノベーションセンター 研究報告,第50号(2022).