超小型衛星の高機能化に関する試験研究事業(第2報)

行武 栄太郎* 石川 裕理* 磯 直樹** 小暮 誠* 関山 燎**

1. はじめに

1.1 宇宙産業の現状

宇宙産業の市場規模はすでに40兆円を超えており、 10~20年後には100兆円を超えると予測されている。 特にデータ通信産業分野は急成長しており、宇宙産業 市場全体の約半分を占める。そこで、近年では、長期 運用でき、大容量のデータ通信を可能とする小型人工 衛星の早期開発が望まれている。小型化することで、1 回の打ち上げで多くの人工衛星を軌道へ放出できるの で、打ち上げコストの削減効果も期待できる。

茨城県は、宇宙産業におけるビジネスチャンス獲得 を目指し、「いばらき宇宙ビジネス創造拠点プロジェク ト」を立ち上げ、地域による自律的な宇宙ベンチャー 企業の創出と誘致に取り組んでいる。また、宇宙ビジ ネスの創出を主体的・積極的に推進する自治体として 「宇宙ビジネス創出推進自治体」に認定されている。

1.2 超小型衛星

超小型衛星(マイクロサット)は総重量100 kg以下 であり、多くのベンチャー企業が小型化を図るために、 設計・製造・技術開発に取り組んでいる。特に 10 cm×10 cm×10 cmを1U(ユニット)とし、複数個を 連結する、3U、6U、12Uと呼ばれる CubeSat(キューブ サット)技術により、低容量化、軽量化、開発期間の 短縮などが可能となり、最終的に打上コストが下がる メリットがある。これに着目し、大学、様々な機関、 ベンチャー企業などが CubeSat 技術を活用した様々な 宇宙ビジネスプランなどを提案している。

しかし、搭載可能容積が小さいため、多機能を付加 した設計が制約されるので、多くのミッションを実行 することは難しい。

2. 目的

本研究の目的は、大容量通信を可能とする技術開発、 及び長期運用を可能とする超小型衛星に搭載可能な推 進装置の技術開発とする。想定する超小型衛星サイズ は、今後の主流になると予測される CubeSat (3U~6U サイズ)、総重量 30 kg以下とした。

データ通信量の増大を実現するには、アンテナ技術の開発が必要である。また、データ通信の信頼性を高めるために、アンテナの指向性を制御する精度の高い 姿勢制御装置(リアクションホイール)の小型化が必要となる。さらに、小型かつ宇宙空間で使用可能な電気式推進装置(ホールスラスタ)の開発も必要である。

そこで、アンテナ基板、リアクションホイール機構、 ホールスラスタ装置の3つの技術分野における試験研 究を実施した。今年度は、以下について実施した。

(1) 通信容量の向上を図るため、積層型アンテナ基板 の試作・評価・検討

- (2)3軸を1U筐体に収める小型化を進め、安定して動 作する姿勢制御システムの構築
- (3)連続運転10s以上で安定した推力が得られるよう、 ホールスラスタの再設計と、性能評価
- 3. 研究内容
- 3.1 アンテナ技術

3.1.1 目標

超小型人工衛星 CubeSat にはアンテナ利得約 2.15dBi のモノポールアンテナやダイポールアンテナ が使用されていることが多いが、展開機構を必要とす るため、動作不良による通信不能が懸念される。また、 平面型のパッチアンテナを CubeSat へ搭載した例もあ るが、CubeSat は表面積が小さく大きなアンテナを設 置できず、そのアンテナ利得は一般に 5dBi 程度と言わ れている。本研究では、上記パッチアンテナを搭載し た現行 CubeSat の 4 倍の通信容量を狙い、アンテナ利 得を多値変調に対応可能な 22dBi 以上に向上させるこ とを目標とする。

3.1.2 積層型パッチアレーアンテナによる高利得化

本研究では、パッチアンテナをアレー化し指向性を 高めて高利得化する方法を採用した。高利得化のため には、アンテナ素子数を増やす必要があるが、超小型 衛星では設置面積が限られている。そこで、単位面積 あたりのアンテナ素子数を増やすため積層構造を検討 した(図1.1)。第1層基板を電波放射素子部、第2層 基板を給電回路部として層を分け、各層基板を重ね合 わせることで省スペース化が可能となる。

3.1.3 アンテナ素子設計

図1.2に設計したパッチアンテナを示す。動作周波 数は 10GHz 帯に設定し、アンテナサイズは 9×9mm (0.3 λ@10GHz) である。設計アンテナは半波長より十 分小さいため、アレー化して構成可能である。第1層 の放射素子への給電は図1.2 中下部から第2層のマイ クロストリップラインで行い、インピーダンスマッチ ングのため、幅2.4mm、長さ 6mm の線路が挿入されて いる。マイクロストリップラインは、動作周波数での 入力インピーダンス約 50 Ω で設計した。基板は 0.8mm 厚のテフロン板を用いており、比誘電率 2.08、誘電正 接 0.001 である。

給電入力部

図 1.2 設計した積層パッチアンテナ

設計したアンテナを電磁界シミュレータ(ANSYS HFSS)で解析した結果を図1.3(指向性)、図1.4(反 射特性)に示す。最大利得は7.9dBi、反射特性は目標 動作周波数である10GHzにおいて-20dB以下であり、 アレーアンテナ用素子として十分な特性を持つアンテ ナであることが確認できた。

図1.4 反射特性の解析結果

3.1.4 アンテナ素子間隔最適化

前項で設計したアンテナを図1.5のように2素子並 ベたアレー配置にて、素子間隔をパラメータに、最大 利得、素子間相互結合(Sパラメータ)を電磁界解析 (図1.6)で求め、最適な素子間隔を算出した。素子 間相互結合(S21)-20dB以下でかつ最大利得8dBi以 上で安定する素子間隔を20mm(0.6 λ以上)@10GHzとし た。なお、小型化のために一部の素子間隔を小さくす る場合には、最大利得が大きく低下しない7.5dBi以上 となる素子間隔13mmとした。

3.1.5 高利得アレーアンテナ設計・試作・評価

図1.7に、解析による最適配置で設計した積層高利 得アレーアンテナの試作品を示す。CubeSatの3Uサイ ズに搭載可能な基板サイズを100×300mmとし、x方向 に4素子、y方向に16素子の64素子を配置した。給 電回路は並列給電方式を採用し、各アンテナ素子への 給電はトーナメント形で、同振幅、同位相となるよう に給電線路の幅および長さを調整し、インピーダンス を整合させた。また、周波数帯域を広く確保するため、 インピーダンス変成器を2段構成とした。基板背面か らSMA コネクタを接続し、中心導体をパターン側にて はんだ付けした構造である。

図1.7 積層高利得アレーアンテナ試作品

図 1.8 に指向性の解析結果と測定結果を示す。最大 利得の解析結果は 22.9dBi、試作品の測定結果は 21.3dBi であり、高利得アンテナであることがわかっ た。解析結果と試作品の測定結果で最大利得の差 1.6dBiの原因は、アンテナに取り付けているコネクタ の損失や第1、2層基板間接続部の隙間によるインピー ダンス不整合等によると思われる。

図1.8 試作品の指向性評価結果

3.2 姿勢制御技術

3.2.1 目標

宇宙空間で姿勢制御を行うアクチュエーターの中で 比較的精度が高く応答性が良好なリアクションホイー ルは、回転するフライホイールの回転速度の変化によ り発生する反作用力を利用して回転トルクを得ること ができるので、3 個以上の独立に制御できるフライホ イールを設置することで、3 次元の姿勢制御を実現で きる。したがって、CubeSat のように小さな機体に、 これらの機能を搭載するためには、アクチュエーター の小型化が必要となる。

図 2.1 に、昨年度¹⁾ 作製した CubeSat 1 U サイズへ 搭載可能なリアクションホイールの原理試作品の外観 を示す。目標仕様である蓄積角運動量:10mNms 以上を 実現できた。

図 2.1 リアクションホイール原理試作品の外観 (左図:ホイールを搭載、右図:ホイールを取外し)

リアクションホイールにさらに改良を加え、3 軸の リアクションホイールを 1U 筐体に搭載する模擬衛星 (CubeSat)の試作と姿勢制御の全体動作を検証する機 能評価システムを開発した。また、超薄型化を実現す るには、メイン部品であるモーターを開発する必要が あり、その可能性を模索するために、上記開発と並行 して、要素試作を実施した。

3.2.2 リアクションホイール

リアクションホイールは、モーターでホイールを回転させることで角運動量が蓄積でき、回転速度を変化させ増減した角運動量を筐体(衛星全体)に移して保存することにより、衛星全体の角運動量を調整するものである。この角運動量は、回転速度と回転体(ホイール)の形状・重量で決まるが、小型化するため円盤状のホイールの半径と厚さを単純に1/3にすると、保存できる角運動量は1/27と3乗に比例して小さくなる。

ホイールの材質(比重)や形状、および最高回転速度 を考慮したバランスのとれた小型化が必須となる。

今年度は、3 軸のリアクションホイールを CubeSat に搭載するために、薄型 (アウターローター型)のブラ シレス DC モーターのシャフトに円盤状のホイールを 取付ける構造を維持した上で、壁面側にホイールを取 付ける構造に変更し、さらに薄型化を目的に、ホイー ルを片面取付け構造とした (図 2.2)。

これにより、全体を覆うカバーを取付けると、ホイ ール内部と外気(真空環境)とを遮断でき、ベアリング 等に特殊な潤滑剤を使用する必要がないので、モータ ー等を汎用部品で構成できるとの見通しを得た。

図 2.2 リアクションホイール試作品の外観 (左図:リアクションホイール単体、右図:カバー取付)

3.2.3 3 軸搭載衛星(CubeSat)の試作

CubeSat 仕様の 1U 筐体内に、pitch/roll/yaw の 3 方向の姿勢制御用リアクションホイールを搭載する模 擬衛星(衛星全体は3Uサイズ)を試作した(図2.3左図)。

図 2.3 模擬衛星試作品の外観(左図)と 操作·表示画面(右図)

本模擬衛星は、3 台のリアクションホイールを筐体 内部の壁面に実装し、一連の姿勢制御動作の確認を目 的として、簡易的な部品構成で試作している。 衛星筐体の仕様を、以下に示す。

- ・筐体サイズ: CubeSat3U
- ・内部容積(1U): 97×97×97mm
- ・筐体材料: SUS(板厚 1mm)
- ・部品搭載位置:
 リアクションホイール(最下段1Uの内部)
 衛星コントローラ(中心段1Uの外壁面)
 電源系部品(中心段1Uの内部)
 ソーラーパネル(最上段1Uの外壁面)
- ・総重量: 約2.5kg(部品搭載)

また、姿勢制御動作を模擬するための衛星コントロ ーラを搭載し、以下に示す機能を実装している。

① ホイールの回転速度制御

リアクションホイールは、薄型(アウターローター型)のブラシレス DC モーターにホール素子を取付け、 モーターコントローラで最大 10,000rpm の回転速度を 茨城県産業技術イノベーションセンター研究報告 第50号
 検知・制御する構成である。省配線化のため、衛星コン
 トローラからの PWM (Pulse Width Modulation)信号の
 指令で 0~10,000rpmの回転速度を制御する。
 ②慣性計測装置(IMU:Inertial Measurement Unit)

IMU は、加速度/ジャイロ等のセンサを搭載し、計 測値に様々な補正を行い、pitch/roll/yawの3次元慣 性運動を検出する装置である。本衛星では、加速度/ ジャイロ/磁気を計測する9軸センサを搭載し、衛星 コントローラのプログラム(センサキャリブレーショ ンやドリフト補正など)で指示値の安定化対策を行う 構成とした。

③外部(仮想基地局)との通信

衛星単体の内部動作を把握するため、本衛星では、 LCD 表示器を搭載し、衛星の姿勢とリアクションホイ ールの回転速度を表示(図 2.3 右図)するのと同時に、 仮想基地局へ無線通信(Bluetooth)を行う機能を実装 する構成とした。

図 2.4 仮想基地局の表示画面

上記機能(①~③)を実装するため、衛星コントロー ラは、以下の機能を備えた M5Stack_GRAY を選定した。

- ・3ch のハードウェア PWM 出力
- ・9 軸センサ(センサチップ: MPU6886/BMM150)
- ・LCD 表示(320x240 カラーTFT)
- ・無線通信(Bluetooth)

また、仮想基地局は、パーソナルコンピュータとし、 Processing 言語で開発したプログラムで、無線通信の 受信データから、衛星の動きに同期して画面内の衛星 画像が回転する機能を開発した(図 2.4)。

3.2.4 姿勢制御機能の評価と評価試験

衛星全体の姿勢制御動作を正確に確認するには、無 重力環境で評価する必要があるが、本システムでは試 作衛星を各々の方向に傾け、検出した衛星の姿勢変化 とホイールの回転速度変化を評価するという簡易的な 方式で、制御ループが正確に動作していることを確認 した。また、衛星コントローラのLCD 表示と仮想基地 局の動画画面で、3 軸ともリアルタイムに制御機能の 動作が追従していることを確認した。

リアクションホイールの評価試験として、昨年度に 実施した1軸のリアクションホイール単体での試験に 加え、3軸搭載時の衛星で評価試験を実施した。

その一例として、3 軸のリアクションホイールを同時に動作させた状態における衛星本体の振動を計測した。図2.5 に衛星の姿勢と測定部位を示す。

図 2.5 衛星の振動測定部位

この振動計測は、バイブレーションメーターを各測 定部位に押し付ける方式と、振動センサを筐体上部(横 設置は、リアクションホイール搭載部)に設置する2 種類の方式で実施した。なお、リアクションホイール は、定常時:5,000rpm、制御動作時:2,000~8,000rpm の値に設計している。

表 2.1 に定常時状態(3 軸のホイールが 5,000rpm で 回転)の振動を測定した結果を示す。本試験は、リアク ションホイールの下部に除震ゴムを敷き、バイブレー ションメーターで各部(図 2.5 ①~⑥)の加速度と速 度を計測した。実際に装置が使われる無重力の環境で は、振動の要因となっているモーター内のベアリング への負荷が変わるため、定量的な評価は行えないが、 回転数と振動(加速度、速度)との関係で、異常となる 挙動は確認されなかった。特に、3 軸のリアクション ホイールの接続点(測定位置①)で振動が大きくなると いう挙動は見られなかった。

表 2.1 定常時の振動測定結果

測定項目	設置方法	測定部位						
		1	2	3	4	5	6	
加速度 m/s2(peak)	横置き	1.9	2.4	1.6	1.6	2.4	2.7	
	縦置き	2.7	2.5	1.7	1.7	2.5	2.8	
速度 mm/s(RMS)	横置き	1.5	2.4	1.9	1.5	2.6	2.0	
	縦置き	1.8	1.8	1.0	1.0	1.8	1.4	

表2.2に制御動作時の振動測定結果を示す。本比較 表は、縦置き設置状態で3軸の回転速度を変化させた 状態における振動データである。昨年度の基礎実験で は、ホイールの回転に対して、振動がリニアに近い形 で大きくなることが判明している。今回のデータでは、 筐体の剛性を高めた結果、定速回転時(2,000rpm)では 殆ど振動がないが、高速回転時(8,000rpm)における高 周波振動(加速度)が、定常時と比べて、2 倍近く大き くなる部位があることが判明した。リアクションホイ ール単体の振動要因を調査した結果、以下の項目で、 高速回転時の振動が 1/4 程度(単体の振動)に抑えられ る見通しを得た。

- ・モーターの選別(ローターとシャフトの関係)
- ・モーター取付部の剛性改善
- ・ホイール取付の不釣合い調整

茨城県産業技術イノベーションセンター研究報告 第50号

測定項目	回転速度	測定部位					
	rpm	1	2	3	4	5	6
	2,000	1.6	1.4	1.5	1.5	1.5	1.5
加速度 m/s2(peak)	5,000	2.7	2.5	1.7	1.7	2.5	2.8
	8,000	7.6	6.1	4.9	1.8	4.8	4.1
速度 mm/s(RMS)	2,000	0.0	0.0	0.0	0.0	0.0	0.0
	5,000	1.8	1.8	1.0	1.0	1.8	1.4
	8,000	2.9	3.1	2.5	1.4	4.2	4.1

表 2.2 制御動作時の振動測定結果

衛星全体に与える振動が大きくなった場合、衛星の 様々なミッションに影響を与える可能性があるため、 振動発生の要因究明及び改善、振動が筐体に伝わらな い構造設計等の対策を検討する必要がある。

3.3 推進技術

3.3.1 目標

CubeSat の 1U サイズに収まり、総重量 30kg 程度の 超小型衛星を、軌道高度 200km 以上で 2 年間以上安定 運転できる推進能力(推力: 3mN 以上、連続運転時間 10s/回以上)を有することを目指す。

今年度は、10s 以上の連続運転が可能な構造を再設 計した。さらには、推力を維持したまま更なる省スペ ース化、効率化を目指した。

3.3.2 ホールスラスタ特性評価方法

ホールスラスタの推力は数 mN と小さいため、微小な 変位を増幅できる振り子式スタンドを用いて評価した。 振り子端部の変位を非接触変位計で測定し、事前に指 定の重さでの振り子の変位を測定した校正用データを 用いて、推力を算出した。振り子式スタンドに固定さ れた試作ホールスラスタを真空チャンバー内に設置し た。真空チャンバー内の真空度は 10⁻³Pa 程度とし、試 験評価中もプラズマ発生用のガスが流れ続けるため、 真空ポンプは連続運転とした。

プラズマを発生させる手順としては、①電磁石コイ ルへ指定の電力(10V、0.6A)を供給、②推進剤(キセ ノン、流量一定)をホールスラスタ、ホロカソードへ 供給、③ホロカソード、ホールスラスタへ通電、④プ ラズマ発生、⑤推力測定、⑥停止、の順序で実施した。 放電電圧は150Vとし、推進剤の流量を3~10sccmと変 化させたときの推力、効率等を評価した。

3.3.3 ホールスラスタ改良及び試作

図3.1に昨年度のホールスラスタ構造(TYPE I)と 新たに設計したホールスラスタ構造(TYPE II)とを示 す。ホールスラスタ中央部(コア)には、純鉄で製作 した円柱状のコアが設置されている。昨年の試験評価 により、このコア径が推力及び、推力安定化へ影響す ることが確認されたので、コアサイズを φ5mm~ φ10mmに可変できる構造とし、特性評価の比較を可能 とした。また、ホールスラスタの全高をTYPE Iと比較 して 50%低減した。

TYPE I

TYPE II

図 3.1 試作したホールスラスタ構造

高さを低くすることで、1U内を有効活用でき、燃料タンク及び制御系(燃料、電流等)を有するホール スラスタとしてのシステム構築を可能とする。ホール スラスタの高さ減少に伴い、磁場を発生させる電磁石 の全長が短くなるため、電磁石に用いるコイル線の巻 き数を増大(2倍)させることで、プラズマ発生部の 磁束密度を維持できるように設計(巻き数、コイル線 サイズ)した。これに伴い、電磁石の直径も大きくす るため、ホールスラスタ全体の幅は増大したが、 100mm×100mm以内に収まるように設計した。

ホールスラスタ全体幅が大きくなることから、プラ ズマ発生を安定化させるためにプラズマ発生領域の断 面積も拡大した。これによりコア径も大きくでき、推 力の安定化が期待できる。

3.3.4 ホールスラスタ TYPE II 磁場特性

図3.2に、新しく設計した TYPE II を用いて、コア径 の変化によるプラズマ発生領域での磁束密度変化を測 定した結果を示す。測定条件は電圧 10V 一定で、電流 を0.1~1.0A の範囲で0.1A 間隔で変化させた。磁束密 度測定にはテスラメータ(TM-801:カネテック(株)製) を用いて、コアと電磁石との間のプラズマ発生部で測 定した。コア径が大きくなるほど磁束密度が高い値を 示し、電流値による磁束密度の増加率も大きくなるが、 電流値 0.9A 付近で増加率が小さくなることが確認さ れた。これは、スラスタを構成している磁性体の磁気

図 3.2 各コア径での磁束密度変化

茨城県産業技術イノベーションセンター研究報告 第50号

飽和が影響していることが考えられる。この測定結果 より、TYPE II のコア径は ϕ 10mm として、推力等の試験 評価を実施した。

図3.3に、電磁石を囲うように板厚1mmの純鉄製の カップを設置した場合のCAE解析した磁束密度の分布 結果を示す。磁場解析ソフトJMAG-Designer17.0.01 を用いて、2次元プラズマ発生付近の磁束密度の分布 をCAE解析した。電磁石へ純鉄製のカバーを設置する ことで、プラズマ発生箇所への磁力集中を目指した。

鉄製カバーを設置することでプラズマ発生部付近の 磁束密度が高くなることが確認された。一方、プラズ マ発生部付近の磁束密度が高くなると、推進剤流路内 の磁束密度が低下していることが確認された。これに より、電離した推進剤の電子、陽子の移動がスムーズ になることが期待できる。

シールド(無)シールド(有)図 3.3 シールド設置による磁束密度分布変化

3.3.5 ホールスラスタ TYPE II 推力評価

図3.4に、新しく設計した TYPE II のホールスラスタ の推力評価時のプラズマ発生の様子を示す。プラズマ 発生状態は TYPE I と比べ安定しており、10s 以上連続 的に発生させることに成功した。また、プラズマの色 も前回と比べ白色系の強い青白いプラズマが観察され、 高い推力と安定した推力が得られることが確認された。 TYPE II では、推進剤の流量を 6sccm にした際に、目標 値である 3mN 以上の推力が得られることを確認した。

推進剤の流量を約 14sccm とすること で 10mN 以上の大き な推力が得られるこ とも確認できた。磁 場発生用の電磁石 (巻き数:1000巻) には、0.6A、10V の 電流を一定で流し試 験評価した。

図 3.4 プラズマ発生の様子

図 3.5 に、コア径の変更、鉄製カバー設置等の改良 による効果を推進剤の質量流量と推力との関係で示す。 コア径の拡大及び、鉄製カバー設置により推力の向上 が確認された。推進剤の質量流量 5sccm までは推力に コア径や磁気シールドによる違いはほとんどないが、 推進剤の質量流量が 6sccm 以上では推力への影響が大 きくなり、コア径 φ10mm と鉄製カバー有りでは、コア 径 φ5mm と比べ推力も大きな影響を与えることが確認 できた。本試験評価での目標値は 3mN であるり、コア 径 φ10mm と鉄製カバー有りの場合では推進剤の質量 流量 6sccm で達成できる。一方、コア径 φ5mm では、 推進剤の質量流量が 10sccm 以上必要となり、効率的に もコア径を大きくし、鉄製カバーを設置することが有 効であることが確認できた。ホールスラスタの推力は、 プラズマにより電離した電子、陽子が効果的に動くこ とで安定した推力を長時間得ることができる。

4. まとめ

超小型衛星の高機能化を目的に、アンテナ技術(ア レー基板)、姿勢制御技術(リアクションホイール)、 推進技術(ホールスラスタ)について検討した。

・アンテナ技術

積層パッチアレー構造を考案し、電磁界シミュレー ション解析により、アンテナ形状、アンテナ配置等の 最適化を実施した。試作したアンテナ基板は、アレー 化構造を有することで、最大利得が 21.3dBi で高利得 であることがわかった。

・姿勢制御技術

超小型衛星でも精度の高い姿勢制御を実現できるリ アクションホイールの小型化に必要な基盤データを蓄 積した。また、3軸のリアクションホイール制御を評 価できる姿勢制御評価システムを構築した。この評価 システムを活用することで、3軸リアクションホイー ルの運用には高周波振動への対策が重要であることを 確認した。

・推進技術

コア径の増大(φ10mm)、電磁石へ磁気シールドを設 置することで、推力 3mNを連続的に 10s 以上安定的に 運転できることが確認できた。また、ホールスラスタ 全高を昨年度モデルより 50%低減したことで、筐体内 の省スペース化を実現した。

5. 参考文献

1)行武栄太郎、石川裕理、磯直樹、小暮誠、関山燎、 超小型衛星の高機能化に関する試験研究事業(第 1報)、茨城県産業技術イノベーションセンター研 究報告、49、1-6、2021