プラズマ溶射による表面改質に関する研究 - プラズマ溶射法による耐アブレージョン性摺動被膜の開発(まとめ)-

小石川 勝男^{*} 中島 秀樹^{*} 篠塚 正樹^{**} 志村 洋文^{***} 佐々木 信也^{***} 丸山 敏雄^{****} 川崎 隆^{****} 岩見 高^{****}

1.はじめに

一般の機械要素において,摩耗に関するトラブルの大 半は,アブレシブ摩耗に起因するものであると言われて いる。摩擦面への硬質粒子混入が避けられないような摺 動部品では,通常の潤滑下でのトライボロジー性能に加 え,耐アブレージョン性に優れた摺動表面の作製が要求 される。本研究では,表面改質による摺動性能と耐アブ レージョン性に優れた摺動表面の開発を目的に,プジマ 溶射法を用いて数種類の表面改質被膜を作製し,それら の摺動性能を評価することにより,耐アブレージョン性 に優れた被膜の選定と耐アブレージョン性向上に必要と される因子を検討した。

昨年度の研究では、減圧プジズマ溶射(LPPS)と高速ル-ム溶射(HVOF)を用いて、混合粉末材料(FeCr+Ni+Mo)と タングステンカーバイト系材料(WC-Co12)により表面改 質被膜を作製し、摩擦面の材料の組み合わせによる耐摩 耗性を評価した。その結果、以下の材料の組み合せのも のが耐摩耗性に優れてた。

(1)減圧プ ラズマ溶射の混合粉末(FeCr+Ni+Mo)被膜と肉盛 溶接鋼

- (2)減圧プラズマ溶射のWC-Co12被膜と肉盛溶接鋼
- (3)高速ルーム溶射のWC-Co12被膜と肉盛溶接鋼

これらの成果を基に本年度は、アブレージョン摩耗の 激しい機械部品の摺動面へ、これらの耐摩耗性表面改質 被膜を適用し、実機試験を行ったので報告する。

2.溶射被膜の製品への適用

今回、耐摩耗性に優れる溶射被膜を、図1のような石 油や温泉を掘るためのドリル先端に用いる掘削ビットに 適用した。

図1 掘削ビット

掘削ビットは、地下数千mの過酷な環境で使用されて おり、掘削ビットのベアリング部(図2)は、土砂侵入 によるアブレージョン摩耗が起こり、ベアリングの摩耗 が激しい。このようなことから、摩耗の激しい掘削ビッ トのベアリング部へ耐摩耗性被膜を適用し、ベアリング 部の耐摩耗性向上を図ることを考えた。掘削ビットベア リング部のボディ側は肉盛溶接鋼とし、カッタ側を各溶 射被膜に変更する方法をとった。ベアリング部のカッタ 内面へ直接溶射する事は、そのカッタの形状や性質上難 しいため、図3のような円筒形状のブッシュ内面へ溶射 したものを、カッタへ圧入する方法により、ベアリング 部へ溶射被膜を適用した。

図2 掘削ビット概略

図3 溶射用ブッシュ

- 3.実験方法
- 3.1溶射被膜の作製

今回、実機に適用した溶射被膜は、昨年度までの研究 において優れた耐摩耗性を示した、減圧プラズマ溶射によ り作製した混合粉末(FeCrNiMo)とWC-Co12の被膜、高速ル -ム溶射により作製したWC-Co12被膜である。

***機械技術研究所基礎技術部トライボロジー研究室

3.2実機試験

溶射ブッシュを組み込んだベアリング構造のビットと、 従来のベアリング構造のビットを図4のビット試験機を 用いて試験し、ベアリングの耐摩耗性(耐久性)を評価 した。

図4 ビット試験機の概略図

3.3試験条件

- (1)ビット荷重 : 4 (ton)
- (2)ビット回転数:80 (rpm)
- (3)試験時間 : 6 時間
- (4)試験用ダスト:JIS Z 8901 2種 けい砂 中位径30 µm(5)スラリー濃度:7 (wt・%)
- (5)スノラー 涙皮・ア (wでる) (6)ビットの状態:ベアリングシール無し
- グリース未封入

カッタインサートチップ無し

3.4ベアリング評価

試験終了後、ビットを分解し、下記項目について調査, 測定を行った。

(1)ベアリング部の外観調査(偏摩耗,キズ,打痕など)(2)溶射被膜の外観調査(割れ,ヒビ,剥離など)

(3)ベアリング部摩擦面の寸法測定

4.実験結果と考察

4.1実機試験

溶射ブッシュを組み込んだ試験用ビットと実機試験の 様子を図5に示す。試験用ビットは、写真のようにカッ タ表面のインサートチップ無しとした。これは、インサ ートチップがあると供試体が短時間で掘られてしまい、 使用できなくなってしまうためインサートチップ無しと した。

実機試験の結果を表1~3に示す。

試験終了後、ビットを分解し、ボディの摩耗量を測定 した結果を表2に示す。

荷重のかからないA 部は、ほとんど摩耗していない が、高荷重のかかるA部には摩耗が見られた。特に、高 速ル-ム溶射のWC-Co12ビットのボディの摩耗量が大きかっ た。これは、カッタ側のWC-Co12被膜および被膜の摩耗, 剥離による粒子が研磨粒となったため、カッタの相手材 であるボディが大きく摩耗したと考えられる。

試験用ビット

実機試験の様子(掘削ビットと供試体) 図5 試験用ビットと実機試験の様子 素1 実機試験の試験状況

試験ビット	試 験 時 間	ビット 荷 重	ビット 回転数	トルク	スラリー 濃度	最大 スラリー温度
	(hour)	(ton)	(rpm)	(kg∙m)	(Wt•%)	()
				50		
従来品	6	4	80	~	7	77
				100		
高速フレーム溶射				60		
WC - C o 1 2	6	4	80	~	7	74
				110		
減圧プラズマ溶射				50		
WC - C o 1 2	0.5	4	80	~	7	37
				110		
減圧プラズマ溶射				60		
混合粉末	6	4	80	~	7	71
				80		

表2 実機試験後のボディ摩耗量

ボディ断面図

(mm)

	カッタ	ボディ摩耗量(径方向)			
試験ビット		A部 荷重側	A 部 非荷重側	B 部 荷重側	B 部 非荷重側
	1	0.13	0.01	0.12	0.05
従来品	2	0.11	0.03	0.04	0.01
	3	0.10	0	0.04	0.02
高速フレーム溶射	1	0.74	0.04	0.45	0.02
WC - C o 1 2	2	0.81	0.01	0.37	0.04
	3	0.91	0.11	0.67	0.01
減圧プラズマ溶射	1	0.21	0.04	0.01	0
WC - C o 1 2	2	0.04	0	0.06	0
	3	0.25	0	0.02	0
減圧プラズマ溶射	1	0.25	0	0.42	0.02
混合粉末	2	0.15	0	0.21	0
	3	0.30	0	0.33	0.03

カッタの摩耗量の測定結果を表3に示す。 表3 実機試験後のカッタ摩耗量

従来品カッタ

溶射品カッタ

(mm)

試験ビット	<u></u> ታማ	カッタ摩耗量(径方向)		溶射被膜の状態
		C部	D部	
	1	0.31	0.08	
従来品	2	0.33	0.04	
	3	0.28	0	
	1	0.05	0.11	被膜部摩耗
				被膜残留量:約60%
高速フレーム溶射	2	0.53	0.13	被膜部摩耗
WC - C o 1 2				被膜残留量:約10%
	3	0.21	0.12	被膜部摩耗
				被膜残留量:約60%
	1	0.06	0	被膜部摩耗無し
				被膜表面ピッチング有
減圧プラズマ溶射	2	0.53	0	被膜剥離
WC - C o 1 2				カッタロック
	3	0.05	0	被膜部摩耗無し
				被膜表面ピッチング有
	1	0.85	0.12	被膜無し
				基材も摩耗有
減圧プラズマ溶射	2	0.90	0.11	被膜無し
混合粉末				基材も摩耗有
	3	0.92	0.09	被膜無し
				基材も摩耗有

従来品のカッタの摩耗量は、3つのカッタとも約0.3mm 程摩耗していて、カッタによる摩耗量の差は少なく、カ ッタの品質は安定していた。

減圧プラズマ溶射の混合粉末ビットのカッタは、すべて 被膜が無くなり摩耗量は大きくなっていた。

減圧プ ラズマ溶射のWC-Co12ビットは、カッタの被膜が剥 離したためNo.2のカッタの摩耗が大きくなっていた。こ のビットは、No.2のカッタの溶射被膜の剥離によってカ ッタロックが起き、30分で試験を中止したためNo.1と No.3のカッタの摩耗量はほとんどなかった。しかし、ブ ッシュ内面の被膜表面には、土砂の硬質粒子によるピッ チングが見られた。

高速ル-ム溶射のWC-Co12ビットにおいては、No.1とNo.3 のカッタの摩耗量は従来品より摩耗が少なかったが、 No.2のカッタは被膜の剥離により摩耗が大きくなってい た。このビットのカッタは、被膜が剥離しなければ、従 来品よりも耐摩耗性は良好であると考えられる。しかし、 表2のボディの摩耗量のように相手側の材料への攻撃性 が強く、相手側を摩耗させてしまうという欠点もある。

5.追加実機試験

今回、3種類の溶射被膜を採用した掘削ビットの実機 試験を行ったが、溶射被膜が剥離したり、相手側(ボディ側)への攻撃性が高く相手側を摩耗させてしまうなど、 あまり良好な結果が得られなかった。

このことから、基材と被膜および溶射粉末材料の粒子 間の密着性を上げ、相手材への攻撃性を低くするため被 膜硬さを抑えることが必要であると考え、現在の材料組 成をベースに、被膜硬さが若干低く、密着性の良くなる 方向の溶射粉末材料を選び、再び実機試験を行った。 この追加実機試験で選択した材料を表4に示す。

表4 追加実機試験で用いた溶射粉末材料

	溶 射 粉 末 材 料
1	Ni60%+FeCr20%+Mo20%
2	Ni80%+Cr20%
3	WC-Co17%

6.追加実機試験結果

追加実機試験の結果を表5~表7に示す。

表5 追加実機試験の試験状況

	試験	ビット	ビット	トルク	スラリー	最大	備考
試験ビット	時間	荷重	回転数		濃度	スラリー温度	(その他)
	(hour)	(t)	(rpm)	(kg∙m)	(Wt•%)	()	
減圧プラズマ溶射				40			5時間後
Ni60+Mo20+FeCr20	6	4	80	~	7	76	振動大
				90			
減圧プラズマ溶射				50			5 時間後
Ni80+Cr20	6	4	80	~	7	68	振動大
				90			
高速フレーム溶射				40			5時間後
WC-Co17	6	4	80	~	7	61	振動大
				00			

表5の試験状況を見ると、前回の試験に比べ、トルク が約20kg・m下がっており、それに伴い最大スラリー温 度も低くなっている。

表6 追加試験におけるボディ摩耗量

ボディ断面図

ボディ平面図 (mm)

	<u></u> ታッタ	ボディ摩耗量(径方向)			
試験ビット		A部	A 部	B部	B 部
		荷重側	非荷重側	荷重側	非荷重側
減圧プラズマ溶射	1	0.16	0	0.13	0.07
Ni60+Mo20+FeCr20	2	0.14	0.01	0.1	0.02
	3	0.24	0	0.12	0.01
減圧プラズマ溶射	1	0.16	0.02	0.23	0
Ni80+Cr20	2	0.24	0	0.34	0.02
	3	0.24	0.01	0.12	0.02
高速ルーム溶射	1	0.81	0.13	0.22	0.06
WC-Co17	2	0.46	0	0.1	0.02
	з	0.25	0.01	0.26	0.01

表6のボディの摩耗量の荷重側A部を比較すると、減 圧プラズマ溶射品においては前回の試験とあまり変わらな かったが、高速ル-ム溶射品については、摩耗量が前回の 約半分となっており、相手材に対する攻撃性が改善され ているのが伺えた。

溶射品カッタ

				(11111)
試験ビット	አ ካራ	カッタ摩耗量(径方向)		溶射被膜の状態
		C部	D部	
				被膜部100%摩耗
減圧プラズマ溶射	1	0.52	0	基材も摩耗
				被膜材ボディに付着
Ni60+Mo20+FeCr20				被膜部100%摩耗
	2	0.93	0.02	基材も摩耗
				被膜材ボディに付着
				被膜部100%摩耗
	3	0.68	0.02	基材も摩耗
				基材も摩耗
減圧プラズマ溶射	1	0.67	0.08	被膜材ボディに付着
Ni80+Cr20				被膜部100%摩耗
	2	0.73	0.1	基材も摩耗
				被膜材ボディに付着
				被膜部100%摩耗
	3	0.92	0.1	基材も摩耗
				被膜材ボディに付着
				被膜部摩耗、ヒビ、剥離有
高速フレーム溶射	1	0.14	0	ブッシュ圧入部外れ。
				被膜残量約70%
WC-Co17				被膜部摩耗、ヒビ、剥離有
	2	0.02	0.04	被膜残量約95%以上
				被膜部摩耗、ヒビ、剥離無
	3	0.02	0.02	被膜残量約95%以上

表7のカッタの摩耗量においても、減圧プラズマ溶射品 は、前回と同様な結果であったが、高速フレーム溶射品は、 前回よりも摩耗量が減っており良好な結果であった。

今回の追加試験の結果は、前回の試験結果よりも良い 結果が出ており、溶射粉末材料の変更の方向性は間違っ ていなかったと考えられる。

今後、さらに被膜硬さを低くしたり、より密着性の良 い溶射粉末材料を用いたりすることにより、さらに良い 結果がでると思われる。

7.結論

耐アブレージョン性に優れた表面改質被膜の開発を目 的に研究を進めた。本年度は、昨年度までの研究で優れ た耐アブレージョン性を示した表面改質被膜を、摩耗の 激しい掘削ビットのベアリング部へ適用し、実機試験に より評価を行った。その結果、以下のような結果を得た。

高速ルーム溶射のWC-Co12ビットは、WC-Co粒子が硬い ため相手側のボディを摩耗させてしまうが、カッタの摩 耗量は従来品よりも耐摩耗性が優れていた。

減圧プラズマ溶射の混合粉末ビットのカッタの被膜は、 すべて摩耗してしまい耐摩耗性はよくなかったが、相手 材への攻撃性はほとんどなく、ボディの摩耗量を抑える ことができた。

溶射粉末材料を密着性がより良く、被膜硬さを抑え た材料に変更することで、溶射被膜の剥離が抑えられ、 また相手材への攻撃性も減少し、耐摩耗性が向上した。

高速ル-ム溶射のWC-Co17のビットは、カッタ側のWC-Co被膜の割れや剥離,摩耗がほとんどなく、また、相手 側のボディの摩耗も少なく、耐摩耗性および摺動特性に 優れていた。

8.まとめ

(mm)

平成6年度より耐アブレージョン性に優れた表面改質 被膜の開発について研究を進めた。

耐摩耗性の向上には、溶射(プラス、マ溶射,高速ル-ム溶 射)による表面改質技術を採用し、耐摩耗性および摺動 特性に優れていると思われる数種類の溶射粉末材料によ り被膜作製を行った。作製した被膜を往復動摩擦試験, アブレージョン試験,ファレックス試験,砂摩耗試験に 用いて、耐摩耗性および摺動特性,耐アブレージョン性 を評価し、耐アブレージョン性に優れた被膜を選定した。

その耐アブレージョン性に優れた被膜を摩耗の激しい 掘削ビットのベアリング部へ適用し、実機試験により評 価した結果、WC-Co17の高速ル-ム溶射被膜を適用したビッ トがベアリング部の状態が最も良好であった。このWC-Co 17の被膜は、従来の掘削ビットのベアリング部よりも耐 摩耗性が優れていた。