レーザ加工技術の研究

1.緒 言

本研究の目的は、Nd:YAGレーザ加工装置を用いて金属 材料の溶接・切断技術を実験的に確立し,県内中小企業に 普及することである。YAGレーザについては,H6年度はレー ザ加工装置の習熟に時間をかけ,H7年度に系統的実験を行 う予定である。本報告は,H6年度にレーザ加工研究会員企 業とCO₂レーザ切断の寸法精度の向上を目的として,共同実 験を実施しまとめたものである。

2. 実験方法

実験は,品質工学のパラメータ設計の手法¹⁾を用いて,寸 法精度を向上する最適加工条件を決定し,標準条件として NCに始めから登録されている加工条件と比較した。使用し た装置を図1に示す。実験に用いた材料は,SS400 6mm¹とし た。

実験計画は,表1に示すように加工精度に影響を与える と考えた因子を内側因子として取り上げ, L18直交表に 順にA~Hを割り付け第5列を誤差列とした。切断形状は,図 2に示すように方向及び長さの違いを誤差と考えて,水平, 垂直,45°の方向をデジタルノギスを用いて6箇所測定し,

これを外側因子とした。

SN比は,外周部の寸法測定をするので,ばらつきを評価 する望目特性(目標値なし)²⁾を採用し6箇所の測定値を用 いて,以下のように計算した。

 $\eta = -10 \cdot \log V e$

 $Xi = (測定値 - 目標値) m = \Sigma Xi/n$ $Ve = \Sigma (Xi - m)^{2}/(n - 1)$ n:データ数(=6)

3. 実験結果

加工物を図3に示す。図3は,実験番号 ~ を左上から 順に下へ並べてある。最後の2個は,標準加工条件と最適加 工条件による物である。この中に,低速不良切断と考えら れるセルフバーニング³⁾の影響を受けた試料がある。

望目特性のSN比を用いて分散分析をした結果を表2に示 す。各因子の効果を図4に示す。図4では、SN比の大きい 水準がよい条件である。各因子の効果は,大きい順に送り 速度, レーザ出力,デューティ,パルス周波数,ガス圧力,

ノズル径であるが,効果の大きいのは,デューティまで と考えられる。最適加工条件は,各因子のSN比の大きい水 準を組み合わせたものであり,推定した最適加工条件,標 準加工条件,及び確認実験による最適条件と標準条件の利 得を以下に示す。

最適加工条件

デューティ=55% ,送り速度=1000mm/min パルス周波数=50Hz,レーザ出力=800W 0₂圧力=2.0Kgf/cm²,ノズル直径=3.0mm 推定値:32dB

図1 CO2レーザ切断装置

表1 制御因子と誤差因子の水準(L18に割付)

内侧因子	水		準	
(制御因子)	1	2	3	
Aデューティ %	55	70		
B 送り速度 mm/min	600	800	1000	
C パルス周波数 Hz	50	100	200	
D レーザ出力 ₩	800	1000	1200	
F 焦点位置 mm	+0.5	0	+1.0	
G ガス圧力 kgf/cm ³	1.0	2.0	3.0	
H ノズル径 mm	1.5	2.0	3.0	
外側因子 6箇所の測定繰返し				
(測定 縦 横 斜め 各2箇所)				
実験の繰り返し1回				

SS400 6mm^t

佐川克雄*

*新技術応用部

図2 加工物形状

標準加工条件

デューティ=55%,送り速度=1000mm/min パルス周波数=100Hz, レーザ出力=800W 0₂圧力=1.0Kgf/cm², ノズル直径=2.0mm 確認実験結果

最適条件:24.9dB

- 標準条件:22.8dB
- 利得 2.1dB

このことから,推定した最適加工条件と,標準条件はほ ぼ同じであるが,若干最適加工条件のほうが良いことがわ かった。なお,寸法精度はカーフ巾の影響が大きい。

しかし,初めて行った実験であることから,以下に示す ような問題も発生した。

 送り速度の遅い条件及びレーザ出力の大きい条件で、 低速不良切断によるセルフバーニングの発生がある。

2) 最適条件の推定値と確認実験値に約7dB程度の違いが ある。平均値より最適条件を検討しているのに,推定値と 確認実験値が大きく異なる原因は,交互作用の影響が大き い, もしくは平均値がセルフバーニングの影響を受け小 さくなり,各効果の平均値が大きくなったためと考えられ る。

3) セルフバーニングの発生は、 レーザパワーに比べて 送り速度が遅いことによると考えられる。これは、 レー ザ出力ごとに最適な送り速度等の加工条件があることを 示している。このことから、 レーザ出力ごとに送り速度 以外の条件を固定した加工速度向上の実験を行い,概略の 送り速度を決定し,次に各レーザ出力ごとに本報告と同様 な実験を行う必要があると考えられる。

4.熱影響の検討

各加工条件による熱影響層の厚さを図5に示す。図5に示 す番号は,実験番号でありその時の加工条件及びSN比を以 下に示す。

P=800W, V=1000mm/min, Duty=55%, f=200Hz, 21.06dB P=800W, V=600mm/min, Duty=70%, f=100Hz, -1.32dB P=1000W, V=600mm/min, Duty=70%, f=200Hz, -1.18dB P=800W, V=1000mm/min, Duty=70%, f=100Hz, 22.09dB

なお,熱影響層は、フェライトが析出せずにカーボンを 固溶している部分としており,硬度も高いと思われる部分 とする。熱影響層は,全体として入り口付近で薄く中間部 から出口付近になるにつれて厚くなる。また、SN比の大 きいほぼ最適な加工条件では、SN比の小さい加工条件に 較べて,熱影響層が小さい。レーザの入り口付近での熱影 響層は、SN比にほとんど関係しないが,中間部,及び出口 付近ではSN比が小さい条件で厚くなる傾向を示す。

図6には,実験番号,びの熱影響層を測定したときの 切断部断面の光学顕微鏡写真を示す。熱影響層の大きさは,

レーザ出力800Wの実験のためか、 S N比が大きく異な るのに 及び でやや が厚い傾向を示すがほとんど差 がない。しかし、 SN比の小さい のレーザ出口には、 ド ロスが付着している。図7には、実験番号 と の中間部の 断面を示す。レーザ出力1000Wの(12)は、800Wの よりも熱 影響層が大きくなっている。これは、レーザ出力の影響と

5. 結 言

レーザ加工研究会員のCO²レーザ切断装置を借用して, SS400 6mm^tの共同切断実験を行った結果,以のことがわか

	自由度	平方和	分散
因子	f	S	V
A デューティ	1	105.9	105.9
B 送り速度	2	393.8	196.9
C パルス周波数	2	146.3	73.1
D レーザ出力	2	277.0	138.5
F 焦点位置	2°	13.7	6.9
G ガス圧力	2	111.7	55.9
Ⅱ ノズル径	2	75.2	37.6
e 誤差	4°	36.2	9.0
e'誤差(°印7°-ル)	6	49.9	8.3
合 計	17	1159.7	

った。

図3 加工物

表2 寸法のばらつきに関する分散分析 dB²

図4 寸法のばらつきに対する各因子効果

1) NCに登録されている加工条件と,実験により求めた最適加工条件は, ほぼ同じような結果となった。

2) 最適加工条件では,熱影響層やカーフ巾が小さい。

3) 最適加工条件は、 レーザ出力により他の加工条件が

異なると考えられる。このことから,詳細な最適加工条件 を求めるには,レーザ出力ごとに実験を行う必要がある。

図5 熱影響層の厚さ

実験番号 Snratio=22.09db

実験番号 Snratio=1.32db

図6 熱影響層の光学顕微鏡写真

図7 熱影響層の光学顕微鏡写真

最後に,共同実験に御協力して頂いた(有)大一製作所の 金森良充氏に深く感謝いたします。

参考文献

実験番号	実験番号
SNratio=21.06db	Snratio=1.18db
1) 田口玄一編,品質工学講	座(3),品質評価のためのS
N比, 日本規格協会(1988)	5
2) 田口玄一編,品質工学講	座(4),品質設計のための実
験計画法, 日本規格協会(1	988)28
3) 池田,藤岡,堀池,丸尾,吉	訂川編i, レーザプロセス
術ハンドブック,朝倉書店(1992)177