オゾン水・紫外光併用による洗浄技術に関する研究

浅野 俊之* 加藤 健* 岩澤 健太* 安藤 亮* 池 昌俊** 阿部 豊***

1. はじめに

半導体製造プロセスにおいて半導体基盤上に電子回 路をパターニングするフォトリソグラフィ工程では, シリコン基盤上にフォトレジストとよばれる感光性高 分子材料を塗布しレジスト膜を部分的に露光すること で,基盤上に回路パターンを転写,その後現像やエッ チング等の加工工程を経て酸化膜上に回路のパターン を形成する.その際,最終的には不要となるフォトレ ジストを除去する工程が必要となる.現在,この洗浄 のためには熱濃硫酸や過酸化水素水などを用いた洗浄 が用いられているが,使用済みの薬液を廃棄するため に多大なコストとエネルギーが必要となり環境負荷を 発生させるという問題点がある。

近年これらの対策として,高濃度オゾン水を熱濃硫 酸の代替として導入する方法が提唱されている。高濃 度オゾン水とは半導体の製造に使用される超純水にオ ゾンガスを高濃度に溶解させた機能水であり,従来の 洗浄方法に比べ金属不純物が少ないことや時間経過と ともに無害な物質に変化するといった環境負荷が低い という特徴が挙げられる。しかし現段階では熱濃硫酸 を媒体とする洗浄液に比べて洗浄速度が低く,レジス ト除去に要する処理時間も長くなるため実用化に向け てはいまだ課題があり熱濃硫酸にかわる洗浄方法とし ての確立が急務となっている。

2. 目的

本研究は高濃度オゾン水を用いたフォトレジストの 除去における流体力学的な作用の寄与の検討を行うと ともに、フォトレジストの除去と紫外光の寄与につい ての検討を含めた化学的分析の二つの側面から研究を 行う。まず、フォトレジスト除去に及ぼす三次元的な 流動構造の影響を調べるために、顕微鏡レンズを用い て流動観測を行うための治具の設計を検討し、製作を 行う。作製した治具を用い、回転するシリコンウェハ とノズルの間の狭隘領域における流動構造の計測を行 う。得られたデータより洗浄方法の最適化を行い、フ ォトレジストの除去効率が最大となるような洗浄方法 の確立を行う。

4. 実験装置

回転円盤間流動を発生させ可視化計測するために、 フォトレジスト除去装置を模擬した実験装置を用いる。 実験装置の構成および外観を図1,2に示す。試験部に 流体を注流するノズルは、フォトレジストを除去する ために本研究の先行研究で提案している円盤型のノズ ルを用いる。円盤型ノズルの円盤部は直径125 mmとし、 可視化計測が可能なように透明なパイレックスガラス で作られている。また、フォトレジスト除去の際と流 体の摩擦力を同等にするために、下側の回転円盤上に は8 inch のシリコンウェハを設置している。回転円盤 の回転数は100 rpm とする。また、円盤間隔は2.0 mm とする。ノズルから垂直に注流された流体は、回転円 盤とノズルの円盤の隙間を満たしながら円盤の外周部 から流出する。

図1 実験装置全体の構成

図2 実験装置テスト部

3. 研究内容

3.1 ステレオ撮影方法の検討

本実験のように、流動構造の三成分流速を計測する 場合、二台のカメラを角度を付けて配置し、異なる角 度から流体に混入した粒子の移動を観測するステレオ PIV (Particle Image Velocimetry:粒子画像流速測定 法)と呼ばれる手法がとられる。二台のカメラを通し て得られた二種類の画像から、三角測量の原理により 被写体の位置を再構成することにより流速を算出する ことができる。また、ステレオ計測手法の一つとして、 鏡面による反射を利用して一台のカメラによってステ レオ画像を撮影する手法も提案されている。本研究に おいては、図3に示すように、光学系の反射を用いた ステレオ計測を適用することとする。

3.2 ステレオ撮影に用いる光学系の設計

本実験において、二方向からのステレオ撮影を行い、 流速を計測するために用いる光学系の仕様を決定する。 図4に、決定すべき光学系の各仕様を記号で示す。中 央に配置するプリズムミラーの斜辺の長さをaで示す。 本実験において、a=5.0 mm、頂角90°のプリズムミラ ーを使用する。サイドミラーの斜面と水平面のなす角 度をβ、水中における撮影角度をα、空気中における光 路と鉛直線のなす角度をγとする。また、顕微鏡レン ズの先端とプリズムミラーの可点の距離を l₀、顕微鏡 レンズの先端とプリズムミラーの中央の高さ位置との 距離を l₁とする。プリズムミラーの中央とサイドミラ ーの水平距離を l₂、サイドミラーと被写体の光路の長 さを l₃とする。L は顕微鏡レンズと被写体までの距離 を示す。各仕様の決定方法について以下に記す。

撮影角度αに対し、二つの角度からの撮影のピント が同時に合う領域は、図5で示すひし形の領域である。 この領域の幅 x が水平面内における r 方向の撮影領域 である。撮影角度αと撮影領域 x の関係は、以下の式 で与えられる。

$$x = \frac{182}{\tan \alpha} \tag{1}$$

撮影領域 $x \epsilon$, 計測が十分な範囲で行えると考えられる 600 μ m とする場合,上式の関係から,撮影角度をおよそ α =18°にすればよいことが分かる。また,水と空気の屈折の関係から, γ の値は水の屈折率 n_1 および空気の屈折率 $n_3 \epsilon$ 用いて以下の式で表される。

$$\gamma = \sin^{-1} \left(\frac{n_l \sin \alpha}{n_3} \right) \tag{2}$$

撮影角度を α =18°とするとき, γ =24.3°である。また, β と γ の関係は幾何計算から,以下の式で表すことができる。

$$\beta = \frac{\pi + 2\gamma}{4} \tag{3}$$

上で求めたγの値を代入すると,サイドミラーの角度は β=57°とすればよいことが分かる。

続いて、各光学系を配置する間隔を決定する。図 4 に橙色の点線で示した、カメラの中心に撮影される光路が、プリズムミラーの下面と交差しない条件を考えることで、*l*2の最低条件 *l2min* を与える。こうして与えられる *l2min* の条件を以下に示す。

$$l_{2\min} = \frac{a}{4} \left\{ 1 + 2\tan\gamma + \tan\left(45^\circ - \frac{\gamma}{2}\right) \right\}$$
(4)

また,顕微鏡レンズの作動距離 W.D.は一定であり, l_1 , l_2 , l_3 の和が, W.D.と等しくなる。 l_3 を直線であると近 似して,以下の式が算出できる。

$$l_2 = \frac{\text{W.D.} - l_0}{1 + \frac{1}{\sin \gamma}} - \frac{a}{4}$$
(5)

(4) 式と(5) 式の関係を図6に表す。 $l_{2min} < l_2$ となる 条件を満たすのは、 l_0 が18 mm以下のときである。これ より、光学系の各種仕様が決定した。本研究では、こ れらの光学系を設計し、設置することで計測を行うこ ととする。

図4 光学系の配置と反射の経路

図5 二つの角度から撮影ピントが同時に合う領域

3.3 光学系のアライメント機構の製作

プリズムミラーおよびサイドミラーの適切な配置を 実現するために作製した調節機構の構成を図7に示す。 中央に配置したプリズムミラーの位置は、片持ち梁の 形状をしたばねにより固定されている。これに対して 二つのサイドミラーの位置の調節を行う。プリズムミ ラーとサイドミラーの間の部分は下側に通し穴となっ ており、下部の被写体を反射させて上方に設置したカ メラによってステレオ撮影することができる。一つの サイドミラーに対して、A, B, C, DまたはE, F, G, Hの四 本のねじが関与している。これらのねじの調節によっ て、回転方向および図中の左右方向にサイドミラーを 移動させることができる。この微調整を行うことで、 光学系のアライメントを高精度で行うことが可能にな った。

図7 光学系のアライメント機構

4. 研究結果

4.1 ステレオ撮影画像のトレーサ粒子流跡線の評価

撮影されたトレーサ粒子像について画像処理を行い、多重露光画像として流線を算出する。画像処理には400枚から1000枚の画像を用いて行い、これは撮影時間0.13から0.33秒間に相当する。半径位置r=40および60mmにおける撮影画像の処理結果を図8に示す。それぞれの画像上において右側が半径方向r、下側が回転方向の正方向である。がそれぞれの画像は図中の実線を境にして、左右にステレオ視したものである。白い線がトレーサ粒子の流線を示し、左右で対になっているものが確認される。また、左右の片側の

みに写る流線も存在することが確認できる。三成分の 流速は、左右で対となって写る粒子のみを抽出して算 出する。トレーサ粒子は全て回転方向正の方向に移動 している。

図8に示した流線から、流線の方向は一定でなく、流 線同士の交差が確認される。この原因として以下の二 つが考えられる。一つは撮影がz方向に幅を持って行わ れており、z方向位置の違いによって流れ方向が大きく 異なる点である。もう一つはz方向へのトレーサ粒子の 移動は画像上においてr方向の移動として反映される ことである。r=40mmにおいて粒子は回転方向と半径 方向ともに正の方向に移動している。また、高さ位置 に関わらず、移動方向に大きな差が無いことから、回 転方向と半径方向の流速の比はほぼ一定であると考え られる。r=60 mmにおいて, z=0.2 mmの位置では粒 子の移動方向は一定の方向を示していることがわかる。 一方で, z=0.6, 1.0, 1.4 mmにおいて流線の交差が多く 見られる。この位置において、回転方向と半径方向の 流速の比が大きく変化していると考えられる。r = 60 mmにおける流線は、r=40 mmと比較して回転方向に 向かう傾向が強いことが確認される。

4.2 円盤間三次元流動構造

撮影されたトレーサ粒子像から流速を算出した。図 9に円盤回転数 100 rpm における半径位置 r = 40 mm の 位置の三成分流速分布を示す。全ての高さ位置におい て回転方向流速 v が支配的であることが分かる。この ことから、回転円盤に近い位置のみならず、固定円盤 側に近い z = 1.4 mm の位置においても、回転円盤の影 響を大きく受けていると考えられる。また、回転円盤 近傍である z = 0.2 mm において、回転方向流速 v = 121mm/s である。100 rpm で回転する回転円盤上の速度は、 r = 40 mm の位置において速度が急激に変化す る速度境界層が存在していると考えられる。半径方向 流速 u は、回転円盤近傍において大きく、z = 1.0 mm の位置においてu = 16 mm/sと小さいことがわかる。z = 1.4 mmにおいて回転方向の流れは生じていない。

図 10 に円盤回転数 100 rpm における半径位置 r = 50 mm の位置の三成分流速分布を示す。回転方向流速 v の値は全ての高さ位置において r = 40 mm の位置にお ける値よりも大きい。半径方向流速 u は, z = 0.2 mm において r = 50 mm における流速成分よりも大きな値 を示している。これは、円盤外周部において遠心力が 大きくなり、回転円盤近傍の半径方向流速が加速され たことによると考えられる。z = 1.0 mm の位置におい てu = 17 mm/s であり、半径位置 r = 40 mm の場合と同様に小さい値を示す。また、z = 1.4 mm において u は 負の値となり、固定円盤の中心方向に逆流する流れが 生じていることを示している。

図 11 に円盤回転数 100 rpm のときの半径位置 r = 60 mm における三成分流速分布を示す。この半径位置において、回転方向流速 v が支配的である傾向が顕著に現れている。回転方向流速は、z = 0.2 mm から高さ位置が高くなるにつれて減少し、z = 1.4 mm において再び大きくなり、その値は回転円盤近傍である z = 0.2 mm における値を上回っている。半径方向流速 u は r = 50 mm の場合と比較して、z = 1.4 mm の位置における 負方向の流れの大きさが大きい。

円盤回転数 100 rpm における高さ方向流速 w を図 12 に示す。z = 0.2 mmの位置において半径位置が中心に 近いほど,回転円盤側に向かう大きな流れが生じてい ることを示している。z = 0.6 mmの位置において,r =40,45,50,55 mm における w は 0 に近い値をとる。ま た,r = 60 mmの位置において,比較的大きな正の値を とり,回転円盤側から固定円盤側に向かって上昇する 流れが発生していることを示している。

5. まとめ

- 本年度の研究により以下の結果を得た。
- 高速回転円盤間における狭隘領域の流動計測を行い、フォトレジスト除去に影響する流動構造を調べるために、ステレオマイクロ PTV のシステムの構築を行った。
- 2. 観測されたトレーサ粒子像の流線から,円盤間に おいて z 方向位置によって複雑に変化する流動が 生じていることを確認した。
- 3. 円盤間における流動は, 円盤回転数 100 rpm の条 件下では半径方向位置 r = 40, 50, 60 mm において 回転方向流速成分が支配的である。半径方向流速 は高さ方向位置によって大きく異なり, 回転円盤 近傍において速く, 固定円盤に近い位置において 固定円盤の中心方向に逆流する流れが生じている ことを確認した。

6. 今後の課題

今後は、製作した流動計測装置を用い、流動計測を 詳細に実行する必要がある。また、同時にオゾン水を 紫外光を併用したときにおけるレジスト除去実験を 種々のパラメータを変えて行う。詳細に計測した流動 構造と、レジスト除去やその際の化学分析の結果を比 較することで、洗浄方法の最適化を行い、フォトレジ ストの除去効率が最大となるような洗浄方法の確立を 行うことが今後の課題である。

7.謝辞

本研究は,産学官連携研究開発推進事業の支援を受けて実施した成果である。ここに記して感謝の意を表 す。