いばらきブランドの耐熱製品の開発(第2報)

常世田茂* , 吉田博和** , 児玉弘人*, 小島均***

1. はじめに

産地特性を生かした素材・商品及び安全・信頼の高 いブランド製品提案を平成16年より進めている。

前年度は既報¹⁾で報告の通り,地元産原料を主体と した耐熱素地を検討し,笠間粘土+ペタライトの配合 により低熱膨張の耐熱素地が得られたものの,適正焼 成温度は産地の焼成条件より低い温度のものであった。

今年度はこの課題を解決するための基礎的な研究を 行ない,その結果下記の目標を満たす耐熱素地を見出 したので報告する。

今年度の目標を次に示す。

SK7~8番焼成での煮沸吸水率5~10%程度。

- ・適正焼成範囲が広く、急激な焼結変化がない。
- ・平均熱膨張係数(α^{600}): 3.0×10⁻⁶以下。
- ・急激な熱膨張を起さないフラットな線熱膨張率。
- ・ロクロ成形及びタタラ成形に適した可塑性。

2. 実験方法

2.1 使用原料

耐熱素地に使用する可塑性粘土は,笠間産の笠間粘 土単味(笠間焼協同組合製),本山木節粘土及び北茨城 蛙目粘土¹⁾²を選択した。

低熱膨張素地とするために配合するペタライトは, 前報³⁾の結果からビキタ産ペタライト#52を用いた。 表1に実験に用いた可塑性粘土の元素組成を示す。

表1 使用原	料の元	素組成	t					(dry	/-wt%)
原料	SiO ₂	AI_2O_3	Fe ₂ O ₃	CaO	K ₂ O	Na ₂ O	Li ₂ O	lg.loss	other
笠間粘土	63.94	18.85	3.34	0.23	1.92	0.97		6.81	3.94
木節粘土	45.03	34.18	1.09	0.09	0.53	0.08		15.32	3.68
北茨城蛙目粘 土水簸物	63.05	19.83	3.50	0.11	1.53	0.15		7.75	4.08
ペタライト (ビキタ産#52)	76.16	17.24	0.18	0.21	0.39	0.16	4.49	0.80	0.37

2.2 素地配合

既報³⁾⁴⁾を基に表2に示す条件で配合した。

表2 実験	素地の配合		(d	ry-wt%)		
피스지	ビキタ産ペタライト	可塑性粘土				
唱C音NO.	(#52)	笠間粘土	本山木節 粘土	北茨城 蛙目粘土		
Ш −6	40	60				
Ш —8	40	48	12			
Ш−10	40	36	24			
Ⅲ-3	40	40		20		
Ⅲ-4	40	30		30		
Ⅲ-5	40	20		40		
Ⅲ-6	40	10		50		
Ⅲ-7	40	0		60		

ペタライトー笠間粘土-本山木節粘土系の配合素地 のノルム鉱物組成を図1に、ペタライト-笠間粘土- 北茨城蛙目粘土系を図2に示す。

笠間-木節系の配合は、本山木節粘土の配合割合の 増加に伴い、粘土質物が増加し石英及び長石分が減少 し、特に石英の減少が著しい。笠間-北茨城蛙目粘土 系の配合は、北茨城蛙目粘土の配合割合の増加に伴い、 粘土質物及び石英が増加し長石分が減少する。

図2 北茨城蛙目粘土配合の鉱物組成

2.3 素地試験

配合素地は、湿式混合し練土状に調整し石膏型を用 い約120mm×25mm×15mmに成形・乾燥後、前術の条件 で各配合及び焼成温度毎に5試料ずつ焼成し、煮沸吸 水率に供した。煮沸吸水率は、3hr 煮沸による定法に より測定した。

焼成は、電気炉による酸化焼成で焼成温度を 1180, 1200, 1220, 1250, 1280(℃)とし、昇温 100(℃/hr) 1hr 保持で行った。

また,ペタライトー笠間粘土ー北茨城蛙目粘土系は, 熱膨張測定及びX線回折試験による鉱物組成の検討を 行った。

2.4 熱膨張及び鉱物組成

焼成体の熱膨張及び熱膨張係数は,焼成体を約 5mm×5mm×10mmに切断し,島津製作所製 TMA-50A を用 い室温~900℃間を測定した。

焼成体の鉱物組成は、焼成後の素地をタングステンカーバイ ド製振動ミルにより粉砕し、理学電機(株)製X線回 折装置 RINT2000-ULTIMA+により測定した。

3. 実験結果

3.1 素地試験結果

木節粘土配合系の結果を図3に北茨城蛙目粘土配合 系の結果を図4に示す。

笠間-木節系は,目標とする焼成温度帯での煮沸吸 水率は目標を達成しなかった。煮沸吸水率の変化が大 きく,焼成条件による品質の差異が大きくなると考え られる。

笠間-北茨城蛙目系は目標とする焼成温度帯での煮 沸吸水率は目標をほぼ達成し、かつ煮沸吸水率の変化 も小さく良好な性状であった。配合Ⅲ-5~7の素地が 良好であった。しかし北茨城蛙目粘土を 50%-60%配 合したⅢ-6及びⅢ-7 は可塑性が悪く、当産地で主流の ロクロ成形やタタラ成形には不適であった。

図3 煮沸吸水率の変化:笠間-本山木節系

焼成:電気炉による酸化焼成 昇温:~SP=100℃/hr, SPで1hr保持 ペタライト40%+粘土60%(笠間+北茨城蛙目)

3.2 焼成体の熱膨張

北茨城蛙目粘土を配合した焼成素地の熱膨張測定結 果を図5~図7示す。各配合素地とも低熱膨張率であ った。また,600℃付近に残留する石英による熱膨張 率の急増が見られた。

北茨城蛙目粘土の配合を多くすると熱膨張は低下傾向にあり,配合Ⅲ-7 では焼成温度 1180℃で熱膨張率(dl/l)がほぼ0になった。

焼成温度が高くなると,熱膨張が概ね大きくなる傾 向が見られた。

0 100 200 300 400 500 600 700 800 900 Temp(℃)

装置:島津TMA-50A 昇温:10℃/min 全膨張測定 試料:ペタライト40% 笠間粘土0% 北茨城蛙目粘土60%

図7 低熱膨張素地の熱膨張測定結果(Ⅲ-7)

平均熱膨張係数 α⁶⁰⁰の測定結果を図8に示す。各配 合とも全焼成温度範囲で、目標値(α⁶⁰⁰:3×10⁻⁶)未 満であった。また,配合Ⅲ-5は全焼成温度範囲でα⁶⁰⁰ が約1.0~2.0×10⁻⁶の範囲内であった。

試料:<<[°]971-40%+笠間粘土+北茨城蛙目粘土

3.3 焼成体の鉱物組成

北茨城蛙目粘土を配合した焼成素地のX線回折試験 結果の例を図9(配合Ⅲ-5)に示す。

各配合とも既報⁵⁾⁶⁾ と同様に *Mullite*, *Quartz*, 及び低 熱膨張性鉱物である β-Spodumene 固溶体

(Li_{0.6}Al_{0.6}Si_{2.4}O₆ (Li₂O Al₂O₃ 8SiO₂)) 及び *Virigitie* (Li_xAl_xSi₃-_xO₆) を同定した。

図10~図13に焼成温度別のX線回折試験結果 を示す。石英量が多い配合III-7は、低い焼成温度で非 常に低い熱膨張を示したが、X線回折試験の結果から Virigitie が多く存在するためと思われる。

焼成素地中には β-Spodumene 固溶体及び Virigitie が存在し,焼成温度が高くなると β-Spodumene 固溶 体が減少し, Virigitie が増加する傾向⁵⁾⁶⁾がみられ,焼 成温度による素地の熱膨張に影響を及ぼしていると考 えられる。また,焼成温度によらず焼成素地中には Quartz が存在し,このことは熱膨張測定結果からも確 認できた。

•: Mullite •: Quartz Δ : β -Spodumene Virigitie

装置:理学電機RINT2000-ULTIMA+ X線:Cu K-α1 30kv/30mA スキャンスビード:0.6 sec/step スキャンステップ:0.02deg

図10 焼成体のX線回折試験結果:焼成温度:1180℃

•: Mullite •: Quartz $\Delta: \beta$ -Spodumene Virigitie

装置 : 理学電機RINT2000-ULTIMA+ X線 : Cu K- α1 30kv/30mA スキャンスピート*: 0.6 sec/step スキャンステップ*:0.02deg

図11 焼成体のX線回折試験結果:焼成温度:1220℃

•: Mullite •: Quartz \triangle : β -Spodumene Virigitie

装置 : 理学電機RINT2000-ULTIMA+ X線 : Cu K- α1 30kv/30mA スキャンスピート・: 0.6 sec/step スキャンステップ・: 0.02deg

図12 焼成素地のX線回折試験結果:焼成温度:1250°C

装置 :理学電機RINT2000-ULTIMA+ X線 : Cu K-α1 30kv/30mA スキャンスビート・: 0.6 sec/step スキャンステップ : 0.02deg

図13 焼成素地のX線回折試験結果:焼成温度:1280°C

4.2 熱膨張係数と煮沸吸水率

ペタライト-笠間-北茨城系素地の耐熱素地として適 正な熱膨張係数と煮沸吸水率を持つ素地配合及び焼成 温度範囲を検討した結果を図14に示す。

適正焼成範囲は,配合Ⅲ-3 では1180℃~1220℃,配 合Ⅲ-5 では1180℃~1250℃,配合Ⅲ-7 では1200℃~ 1250℃であった。目標とした煮沸吸水率5~10%程度, 平均熱膨張係数α⁶⁰⁰以下及びSK8 で焼成可能な素地配 合はペタライト 40%, 笠間粘土 0~40%, 北茨城蛙目粘 土 20~60%であった。この素地のノルム鉱物組成はペ タライト 40%, 粘土質物 26~28%, 石英 21~22%, 長 石質 9~7%であり,この組成範囲であれば同様の素地 が得られると推察される。

5. まとめ

ペタライトに可塑性粘土として笠間粘土及び北茨 城蛙目粘土を配合し、SK7~SK8 での煮沸吸水率を目標 値の 5~10%程度に調整できた。また、この配合系は 焼成温度の変化に対して急激な焼結変化が少ない扱い やすい素地となった。

熱膨張特性は、600℃付近で石英に起因する若干の 急膨張が見られるものの目標値である平均熱膨張係 数 (α^{600}) : 3. 0×10^{6} 以下を満足するものであった。

X線回折試験の結果から低熱膨張となった原因は β-Spodumene 固溶体及び Virigitie の析出によるもので あることが確かめられた。

開発目標を満足する素地配合は、ペタライト40%-笠間粘土単味20%-北茨城蛙目粘土40%であった。

今後は,配合素地に適した釉薬や化粧についての試 験と熱衝撃試験について繰り返し行うことで耐久性に ついて検証を行う計画である。

参考文献

- 1) 茨城県工業技術センター研究報告, 18, 94~95, (1990)
- 2)茨城県工業技術センター研究報告,24,81~82,(1996)
- 3)茨城県工業技術センター研究報告 33,56~57,(2005)
- 4)茨城県窯業指導所業務報告, 7~9, (S50)
- 5) 三重県窯業試験場年報 Vol. 21, 4~7, (1986)
- 6)平成16年度栃木県窯業技術センター窯業技術講習会資料,(2004)