磯 智昭*

1.緒言

有機 E L (ElectroLuminescence)素子は,透明導 電性ガラス,有機系発光体/金属等の積層薄膜,及び 封止材料(カバー,接着用樹脂)からなる。自発光型 素子なのでバックライトが不要で広視野角,低消費電 力,及び水銀等の有害物質を含まないことから,各種 ディスプレイへの応用が期待されている。

有機系発光体としてはレーザー色素のような低分子 化合物を用いた素子が多く、この場合は蒸着法により 化合物薄膜を形成する。これに対し1990年以降可溶性 高分子化合物を発光体とした素子の研究が活発にな り、多くの報告がなされている¹⁾²⁾。可溶性高分子の 場合は、スピンコート法により発光層薄膜を形成でき るのが特徴で、蒸着法よりも作業が簡単である。材料 としてはポリパラフェニレン誘導体¹⁾、ポリフルオレ ン誘導体²⁾等が代表的であるが、その多くは直鎖状高 分子に様々な置換基を導入して可溶性を付与したもの が多く、モノマーから合成する必要があり、高コスト である。

筆者らは,多くの分岐を持つ立体的高分子が有機溶 媒に可溶であることに着目し,トリフェニルアミンを 構成単位とする多分岐高分子³⁾⁴⁾の開発及び物性評価 を行ってきた。またこれらを発光体に用いたEL素子 を試作して,発行特性等を評価した⁵⁾⁶⁾。

今年度は,素子試作工程の1つである蒸着技術,及 び青色以外の発光材料の合成について検討した。本稿 ではこれらの結果に加え,H12年度より行った青色表 示素子試作研究の結果を総括して報告する。

2.実験方法

2.1.蒸着実験

(1)装置

有機 E L 試作装置(トッキ㈱製)を用い,真空蒸着 法により金属薄膜を作成した。薄膜の厚さは,膜厚計 (㈱インフィコン製XTC/2)により,リアルタイムで 測定した。

(2)材料

金属はカルシウム(塊状, 2~5mm)及びアルミニ ウム(ワイヤ状, 1mm)を用いた。有機物は,有機 EL素子の電荷移動層材料として使われるバソフェナ ントロリン及びバソキュプロイン(ともに東京化成㈱ 製)を用いた。

(3)方法

カルシウムは固まりなのでバスケット型のフィラメ ント(タングステン製,長さ100mm,太さ0.8mm)を用 い,バスケット内に1~2個をセットした。アルミニウ ムはワイヤ状なので20mm程度に切り,これを半分に折 り曲げてヘリカルコイル型フィラメント(タングステ ン製,長さ100mm,太さ0.8mm)に掛けてセットした。

有機物2種は粉状なので,箱型ボート(モリブデン 製,長さ100mm,巾17mm)を用いた。

図 1 蒸着用フィラメントとボート (上からバスケット型,ヘリカル コイル型,箱型)

*繊維工業指導所 高分子技術部

図2 高分子の合成反応式

2.2.高分子合成実験

トリス(4-ブロモフェニル)アミン及びp-ジビニル ベンゼンを原料,酢酸パラジウム(Pd(OCOCH3)2)及 びトリス(2-メチルフェニル)ホスフィン(P(C6H4 -CH3)2)を触媒,ジメチルホルムアミド(DMF,(CH3)2-NCH0)を溶媒とした反応により多分岐高分子を合成し た。反応器内はアルゴン置換して不活性雰囲気にし, 100 に加熱しながら約18時間かくはんした。

2.3.素子の試作実験

導電性ガラスであるITOガラス(フルウチ化学㈱製, 大きさ100mm×100mm)をガラス切りで30mm×30mmに切 断し,アセトンで洗浄,次いで超音波洗浄した。これ を基板とし図3に示す構造の素子を試作した。ホール 注入層はポリエチレンジオキシチオフェン(PEDOT) 水溶液(㈱バイエル製)を用い,発光層は当所で合成 した高分子の2wt%テトラヒドロフラン溶液を用い, スピンコート法により(2500rpm,30sec)形成した。

図3 試作した素子構造の概略

3.結果

3.1.金属蒸着実験

有機 E L 素子は発光層である有機物薄膜の上に蒸着 法により金属を積層させるが、この際金属原子の速度 が速すぎると発光層を破壊する。アルミニウム、カル シウム等は1~2nm/sec程度の積層速度で徐々に積層す るのが望ましい。

カルシウム(bp.1480)の実験では,フィラメント加熱電流を約20Aに保持することにより,蒸着速度を0.02~0.05nm/secに制御することができた。

アルミニウム (bp.2470) はカルシウムよりも沸 点が高いので,0.05nm/sec程度の速度にするには約50 Aの加熱電流を要した。

蒸着速度約0.05nm/secでガラス板上に実際の素子 電極と同じ構造である,カルシウム15nm/アルミニウ ム100nmの積層薄膜を作成した。面積は30mm×30mmと した。カルシウムは空気中の湿気等により劣化しやす いが,今回作った試料は1ヶ月以上放置しても金属面 の劣化は見られなかった。これはアルミニウム層によ リカルシウム層を十分にカバーできているためであ り,今回の実験条件で2層構造金属電極が作れること が確認できた。

3.2.有機物蒸着実験

有機物の2つは,蒸着開始までに約70Aの加熱電流 を要した。これは有機物が気化しにくいためではなく, 用いたボートを十分に加熱させるのに予想以上の電流 が必要になったためと考えられる。これを確かめるた め,材質・長さが等しく巾が6mmのボートを使用した ところ,約15Aで蒸着が始まった。このように蒸着に は実験条件1つの違いで作業効率が大幅に変化する。

なお巾17mmのボートを用いて,蒸着速度を約0.05 nm/secに制御し,厚さ約30nmのバソフェナントロリン, 及びバソキュプロイン薄膜を作ることができた。

3.3.高分子合成実験

実験条件及び結果を表1に示す。得られた高分子は 黄色粉末で,テトラヒドロフラン等多くの有機溶媒に 可溶であった。500 以上に加熱すると色が褐色にな るが融解はしなかった。

その高分子について,濃度1×10⁻⁶g/mlの溶液を作 り蛍光スペクトルを測定したところ,ピーク波長約 490nmの青緑色の蛍光を観測した(図4)。前年度ま でに開発した高分子材料と構造を比較すると(図5), C=C二重結合,ベンゼン環の増加により共役部分(単 結合と二重結合が交互に並んだ部分)が長くなった。 これに伴って高分子の持つバンドギャップの縮小し, 蛍光の波長が長くなったものと考えられる。

3.4.素子の試作実験

面積20mm×20mmで図3の構造の素子を試作した。直

流電源を用い電圧をかけたが,今回の素子は発光しな かった。主な原因としては,比較的面積を大きくした ためピンホールができやすく,これによるショート(短 絡)が考えられる。

4.青色表示素子の試作研究

4.1.発光材料の開発

トリフェニルアミンをベースとした高分子(図5a),b))について,合成,高分子中のハロゲン原子置 換の検討,物性評価を行った³⁾⁴⁾。なお本件について は,(独)産業技術総合研究所の指導と協力を得た。

各生成物について,赤外吸収スペクトル,元素分析 により構造を確認した。合成した高分子の蛍光スペク トルを測定し,ピーク波長420~430nmの純粋な青色発 光を確認した。

No.	TBPA g	p-DVB g	Pd(OCOCH3)2 mg	Р (С 6 Н 4 СН 3) з g	N (C 2 H 5) 3 m I	DMF ml	ポリマー重量 g
	0.1156 (0.24mmol)	0.031 (0.24mmol)	2.2 (0.01mmol)	0.0142 (0.046mmol)	0.4	20	0.1047
	0.5780 (1.2 mmol)	0.155 (1.2 mmol)	11.0 (0.05mmol)	0.071 (0.23 mmol)	2.0	20	0.5377
	0.2890 (0.6 mmol)	0.0775 (0.6 mmol)	5.5 (0.025mmol)	0.0355 (0.115mmol)	1.0	20	0.2516

表1 高分子合成反応の条件と結果

) PDPBPA

c) 今回,新規に合成した高分子

図4 合成した高分子の蛍光スペクトル

図5 高分子の構造式

4.2.素子の試作と評価

トリフェニルアミンをベースとした高分子(図5a),b))を発光体とした素子を試作し,特性評価を行った^{5,5}。なお本件については,スタンレー電気㈱の 指導と協力を得た。

素子の積層構造は構造は図3と同じであるが,発光 部面積は2mm×2mm,ホール注入層と発光層はスピンコ ート法,ホールブロック層と金属電極は抵抗加熱法に より形成した。

試作した素子の主な特性を表2に示す。これまでの 結果,PTPAの素子は輝度は高い反面,表示色が白色を 帯びあまり純粋な青色でない。蛍光スペクトルを比較 すると(図6),PTPAの場合480~700nmの広い領域で ブロードなバンドが見られ,これは緑色~赤色の蛍光 が出ていることを示し,表示色がやや鮮明でないこと を裏付けている。一方PDPBPAの素子は,CIE色度座標 で(0.16,0.08)などかなり純粋な青色を表示できる ことを確認した。

5.結言

トリフェニルアミンを構成単位とする,立体的多分 岐高分子を合成した。これらの高分子は強い青色~緑 色の蛍光を発する。

青色発光高分子を発光体とする有機 E L 素子を試作 した。表示色の目視及びCIE色度座標測定の両方から, 発光色は鮮明な青色であることを確認した。輝度はほ ぼ実用レベルである。

薄膜面積を20mm×20mmに拡大して試作を行ったが, 発光しなかった。原因として高分子薄膜成形,仕上げ 段階である積層薄膜の封止に問題があったためと考え られるが,換言すればこれらの技術の改善により発光 面積の拡大が実現でき,製品化につながると考えられ る。

参考文献

- 1)J.H.Burroughes et al., Narure, $\underline{342}$, (1990), 539
- 2)Y.Ohmori et al., Japanese Journal of Applied Physics ,<u>30</u>,(1991), L1941
- 3)S.Tanaka,T.Iso, Chemical Communication,(1997), 2063

表 2 試作した素子の特性

	発光材料	発光開始電圧 (∀)	最高輝度 (cd/㎡)	色度座標 (x,y)	
-	PTPA	7.5	243	(0.24,0.23)	
	″	9.0	95	(0.22,0.15)	
	PDPBPA	6.5	54	(0.17,0.13)	
	"	10.0	66	(0.16,0.08)	

図6 素子の蛍光スペクトル

- 4)S.Tanaka,T.Iso, Synthetic Metals, <u>119</u>,(2001), 139
- 5)磯,茨城県工業技術センター研究報告 第29号, (平成13年),P48
- 6)磯,茨城県工業技術センター研究報告 第30号, (平成14年),P50